organised by

Logo FutureLab



Data Mining in Medicine and Biotechnology

  • Mining Images to Find General Forms of Biological Objects, P. Perner, H. Perner, A. Bühring, S. Jähnichen, Petra Perner (Ed.), Advances in Data Mining - Applications in Image Mining, Medicine and Biotechnology, Management and Environmental Control, and Telecommunications, Proceedings of the ICDM 2004, Springer Verlag, lnai 3275, 2004, pp. 60-68

  • Mining Knowledge for Hep-2 Cell Image Classification, P. Perner, H. Perner, and B. Müller, Journal Artificial Intelligence in Medicine, Vol. 26/2002, pp. 161-173, 2002, PDF-Datei

  • Texture Classification based on Random Sets and its Application to Hep-2 Cells, P. Perner,H. Perner, and B. Müller, ICPR 2002, IEEE Computer Society 2002 Vol. II, R. Kasturi, D. Laurendeau, and C. Suen (Eds.), pp. 406-411, 2002, PDF-Datei

  • Classification of HEp-2 Cells Using Fluorescent Image Analysis and Data Mining, P. Perner, Medical Data Analysis, J. Crespo, V. Maojo, and F. Martin (Eds.), Springer Verlag, lnai 2199, pp. 219-225, 2001, PDF-Datei

  • Mining knowledge in x-ray img for lung caner diagnosis, P. Perner, ECAI-2000 Workshop Notes 5th Intern. Workshop on Intelligent Data Analysis in Medicine and Pharmacology, N. Lavrac, S. Misch, and B. Kavsek (Eds.), pp. 56-51, 2000

  • Mining Knowledge in Medical Image Databases, P. Perner, Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Proceedings of SPIE Vol. 4057 (2000), Belur V. Dasarathy (eds.), pp. 359-369, 2000, PDF-Datei

  • Data Mining in Picture Archiving Systems, P. Perner, 3rd Intern. Conference on Practical Application of Knowledge Discovery and Data Mining, Proc. PADD99, pp. 207-210, 1999

  • Knowledge Acquisition by Decision Tree Induction for Interpretation of Digital Images in Radiology, P. Perner, T. B. Belikova, N. I. Yashunskaya, Advances in Structural and Syntactical Pattern Recognition, P. Perner, P. Wang, and A. Rosenfeld (Eds.), Springer Verlag Lncs 1121, 1996, PDF-Datei

  • Automatische Wissensakquisition bei ovarieller Stimulierung mittels Entscheidungsbäumen, K. W. Haake, P. Perner, S. Trautzsch, P. List, H. Alexander, 5. Jahrestagung AIG für Informationsverarbeitung in der Gynäkologie und Geburtshilfe, Ruhr-Universität Bochum, 1995

  • Inductive machine learning program in 414 stimulated in-vitro-fertilization (IVF) cycles for estimation and validation of varying parameters, K. W. Haake, P. Perner, S. Trautzsch, P. List, H. Alexander, 11th Annual Meeting on Human Reproduction and Embryology, Vol. 10, Oxford University Press, 1995